Cermet Resistor Networks ## **EXPLANATION OF PART NUMBERS** ## Typical performance test capabilities | Test
Group | Order
Of
Test | Examination or Test | Test Method
Per MIL-R-83401
(Paragraph) | Post Test Requirements | |---------------|---------------------|--|---|--| | I | 1 | Visual and Mechanical
Examination | 4.6.2 | In accordance with applicable requirements. | | | 2 | Thermal Shock | 4.6.3 | Resistance change ± 0.25 percent maximum. | | | 3 | DC Resistance | 4.6.5 | In accordance with applicable requirements. | | | 1 | Solderability | 4.6.6 | Resistance change ± 0.25 percent maximum. | | II | 2 | Resistance to Solvents | 4.6.7 | Resistance change ± 0.25 percent maximum. Marking shall remain legible. | | Ш | 1 | Resistance Temperature
Characteristic | 4.6.8 | Within specified limits (normally ± 100 ppm/° C or ± 250 ppm/° C). | | | 2 | Low Temperature Operation | 4.6.9 | Resistance change ± 0.25 percent maximum. | | | 3 | Short Time Overload | 4.6.10 | Resistance change ± 0.25 percent maximum. | | | 4 | Terminal Strength | 4.6.11 | Resistance change ± 0.25 percent maximum. | | | 1 | Dielectric Withstanding
Voltage | 4.6.12 | Resistance change ± 0.25 percent maximum. No mechanical damage, arcing or breakdown. | | IV | 2 | Insulation Resistance | 4.6.13 | 10 ¹¹ Ohms minimum. | | | 3 | Resistance to Soldering
Heat | 4.6.14 | Resistance change ± 0.25 percent maximum. | | | 4 | Moisture Resistance | 4.6.15 | Resistance change ± 0.5 percent maximum. | | V | 1 | Shock (Specified Pulse) | 4.6.16 | Resistance change ± 0.25 percent maximum. | | | 2 | Vibration, High Frequency | 4.6.17 | Resistance change ± 0.25 percent maximum. | | VI | 1 | Life | 4.6.18 | Resistance change ± 0.5 percent maximum. | | VII | 1 | High Temperature Exposure | 4.6.19 | Resistance change ± 0.5 percent maximum. | | | 2 | Low Temperature Storage | 4.6.20 | Resistance change ± 0.25 percent maximum. | ${\bf INSPECTION~CONDITIONS:}~ Unless otherwise~specified,~all~measurements~are~understood~to~be~made~at~the~following~initial~inspection~conditions:$ Normal atmospheric pressure. Relative humidity of 40 ± 10 percent. Ambient temperature of $24^{\circ}\pm2^{\circ}$ C. **NOTE:** During an inspection or qualification, all the networks shall be subjected to the inspections of Test Group I. The total samples are then divided into Groups II to VII inclusive, and subjected to the tests and inspections of the particular group. # Cermet Resistor Networks I-SIP Single In-Line Package #### **FEATURES** - Solid Ceramic Body, with V-Groove - Triple-Strength Leads - 0.100 Inch (2,54mm) Lead Spacing - Two Package Heights: 0.190 Inch (4,83mm), 0.350 Inch (8,89mm) - 6, 8 and 10 Pins - Automatically Insertable - Permanent Laser Marking - Part Markings Side and Top ## **SPECIFICATIONS** ## General capabilities #### I-SIP - Single In-Line Package: - A unique packaging concept for single in-line resistor networks. - Provides standard cermet resistor networks and custom network designs. - Standard circuits available in 6, 8 and 10 pin packages and in two package profiles. ### **Applications** - Pull-up and pull-down arrays - Transmission line terminators - Current limiting resistors - ECL terminating networks - A wide array of custom designs For Applications Information refer to the following Allen-Bradley Application Notes: - Digital System Resistor Arrays: EC5410-4.1 - ECL Terminator Networks: EC5410-4.2 - Resistive Attenuator Pads: EC5410-4.3 ## Tough new package # Cermet Resistor Networks ## Standard resistance values Series 106A, 108A, 110A, 106B, 108B, 110B, 406A, 408A, 410A, 406B, 408B and 410B Resistor Networks | Territoria de la | R (Ohms) | | | | | |------------------|----------|------|------|------|--| | 22 | 180 | 1.2K | 6.8K | 47K | | | 33 | 220 | 1.5K | 8.2K | 56K | | | 39 | 270 | 1.8K | 10K | 68K | | | 47 | 330 | 2K | 12K | 100K | | | 56 | 390 | 2.2K | 15K | 120K | | | 68 | 470 | 2.7K | 18K | 150K | | | 82 | 560 | 3.3K | 22K | 180K | | | 100 | 680 | 3.9K | 27K | 220K | | | 120 | 820 | 4.7K | 33K | 470K | | | 150 | 1K | 5.6K | 39K | 1M | | For intermediate values between 22 ohms and 1 megohm not listed above, consult Allen-Bradley Co., Milwaukee, Wisconsin. Series 106E, 108E, 110E, 406E, 408E and 410E Resistor Networks | R1/R2 | Zo (Characteristic
Impedance) | |---------|----------------------------------| | 180/390 | 123 | | 220/330 | 132 | | 330/390 | 179 | | 3K/6.2K | 2.02K | Series 206A, 208A, 210A, 206B, 208B, and 210B 206E, 208E, and 210E Resistor Networks. Consult Allen-Bradley Co., Milwaukee, Wisconsin for available resistor values. ## Standard network specifications **Resistor tolerance** $-\pm 2\%$ or ± 1 ohm whichever is greater, $\pm 1\%$ available. Temperature coefficient of resistance – ±100 ppm/° C. Operating temperature range – -55° C to +125° C. | Power - Network
Series
Designation | Dissipation Rating (up to 70° C Ambient) | |--|---| | 106A, 108A, 110A
406A, 408A, 410A | 2 125 mw/per resistor2 250 mw/per resistor | | 106B, 108B, 110B
406B, 408B, 410B | 2 250 mw/per resistor2 500 mw/per resistor | | 106E, 108E, 110E
406E, 408E, 410E | 2 125 mw/per resistor
2 250 mw/per resistor | - 1 At +70° C power derates linearly from full rated power to 0 wattage at - 2 Rated continuous working voltage (RCWV), based on nominal resistance (R) in ohms, is √Individual Resistor Power Rating (see Table) x R or 100 volts, whichever is less. ## Standard network schematic diagrams ### Custom resistor networks When an Allen-Bradley standard resistor network does not fit your exact application, consider our custom resistor networks. The following is a summary of Allen-Bradley custom single-in-line resistor network capabilities: **Resistance range** — 10 ohms to 10 megohms. Requests for custom resistor networks can best be met when the total number of different resistor values is limited to a small number. **Tolerance (absolute)** — Standard $\pm 2\%$. Special to $\pm 1.0\%$. Resistance matching or ratio — Low as $\pm 1\%$. Temperature coefficient of resistance (TCR) - $\pm 250 \text{ ppm/}^{\circ} \text{ C}$ and $\pm 100 \text{ ppm/}^{\circ} \text{ C}$. **TCR tracking** — Depends on resistance range and number of resistors. Typical tracking is ± 50 ppm/° C or ± 100 ppm/° C. **Temperature range of operation** — Industrial (0° C to $+70^{\circ}$ C), Military (-55° C to $+125^{\circ}$ C) and other ranges available. User-trimmable option — Resistor networks can be designed to permit the user to actively calibrate the networks in a system. Resistors can be trimmed under actual circuit operating conditions, providing in-circuit settability. Trimming methods include lasers, sand abrasion, and mechanical. ## PACKAGE POWER RATINGS (WATTS) (up to 70° C ambient) | Package | Number of Pins | | | |----------------------|----------------|-----|-----| | Height
(Profile) | 6 | 8 | 10 | | Low Profile (.190") | .6 | .9 | 1.1 | | High Profile (.350") | 1.0 | 1.3 | 1.8 | 1 At +70° C power derates linearly from full rated power to 0 wattage at +150° C. ## **DIMENSIONS** ## Low profile 100 series | Pkg.
Style | No. of
Pins | "A" Dimension | |---------------|----------------|---------------| | 106 | 6 | .578 (14,68) | | 108 | 8 | .778 (19,76) | | 110 | 10 | .978 (24,84) | ## High profile 400 series | Pkg.
Style | No. of Pins | "A"
Dimension | |---------------|-------------|------------------| | 406 | 6 | .578 (14,68) | | 408 | 8 | .778 (19,76) | | 410 | 10 | .978 (24,84) | Basic dimensions in inches. Dimensions shown in parentheses are in millimeters. #### **TOLERANCES** Dimensional Tolerance $\pm .005$ (0,13) Angular Tolerance $\pm 5^{\circ}$ Except as Specified. #### **NOT TO SCALE**